Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 211(12): 1806-1813, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37870292

RESUMO

Platelets are key contributors to allergic asthma and aspirin-exacerbated respiratory disease (AERD), an asthma phenotype involving platelet activation and IL-33-dependent mast cell activation. Human platelets express the glucagon-like peptide-1 receptor (GLP-1R). GLP-1R agonists decrease lung IL-33 release and airway hyperresponsiveness in mouse asthma models. We hypothesized that GLP-1R agonists reduce platelet activation and downstream platelet-mediated airway inflammation in AERD. GLP-1R expression on murine platelets was assessed using flow cytometry. We tested the effect of the GLP-1R agonist liraglutide on lysine-aspirin (Lys-ASA)-induced changes in airway resistance, and platelet-derived mediator release in a murine AERD model. We conducted a prospective cohort study comparing the effect of pretreatment with liraglutide or vehicle on thromboxane receptor agonist-induced in vitro activation of platelets from patients with AERD and nonasthmatic controls. GLP-1R expression was higher on murine platelets than on leukocytes. A single dose of liraglutide inhibited Lys-ASA-induced increases in airway resistance and decreased markers of platelet activation and recruitment to the lung in AERD-like mice. Liraglutide attenuated thromboxane receptor agonist-induced activation as measured by CXCL7 release in plasma from patients with AERD and CD62P expression in platelets from both patients with AERD (n = 31) and nonasthmatic, healthy controls (n = 11). Liraglutide, a Food and Drug Administration-approved GLP-1R agonist for treatment of type 2 diabetes and obesity, attenuates in vivo platelet activation in an AERD murine model and in vitro activation in human platelets in patients with and without AERD. These data advance the GLP-1R axis as a new target for platelet-mediated inflammation warranting further study in asthma.


Assuntos
Asma Induzida por Aspirina , Asma , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Interleucina-33 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos Prospectivos , Ativação Plaquetária , Aspirina/farmacologia , Inflamação , Receptores de Tromboxanos/uso terapêutico
2.
Sci Immunol ; 6(66): eabj0474, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34932383

RESUMO

Aeroallergen sensing by airway epithelial cells triggers pathogenic immune responses leading to type 2 inflammation, the hallmark of chronic airway diseases such as asthma. Tuft cells are rare epithelial cells and the dominant source of interleukin-25 (IL-25), an epithelial cytokine, and cysteinyl leukotrienes (CysLTs), lipid mediators of vascular permeability and chemotaxis. How these two mediators derived from the same cell might cooperatively promote type 2 inflammation in the airways has not been clarified. Here, we showed that inhalation of the parent leukotriene C4 (LTC4) in combination with a subthreshold dose of IL-25 led to activation of two innate immune cells: inflammatory type 2 innate lymphoid cell (ILC2) for proliferation and cytokine production, and dendritic cells (DCs). This cooperative effect led to a much greater recruitment of eosinophils and CD4+ T cell expansion indicative of synergy. Whereas lung eosinophilia was dominantly mediated through the classical CysLT receptor CysLT1R, type 2 cytokines and activation of innate immune cells required signaling through CysLT1R and partially CysLT2R. Tuft cell­specific deletion of Ltc4s, the terminal enzyme required for CysLT production, reduced lung inflammation and the systemic immune response after inhalation of the mold aeroallergen Alternaria; this effect was further enhanced by concomitant blockade of IL-25. Our findings identified a potent synergy of CysLTs and IL-25 downstream of aeroallergen-trigged activation of airway tuft cells leading to a highly polarized type 2 immune response and further implicate airway tuft cells as powerful modulators of type 2 immunity in the lungs.


Assuntos
Cisteína/imunologia , Células Epiteliais/imunologia , Interleucinas/imunologia , Leucotrienos/imunologia , Pneumonia/imunologia , Animais , Camundongos , Camundongos Transgênicos
3.
Sci Immunol ; 6(56)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637594

RESUMO

Mast cells (MCs) play a pathobiologic role in type 2 (T2) allergic inflammatory diseases of the airway, including asthma and chronic rhinosinusitis with nasal polyposis (CRSwNP). Distinct MC subsets infiltrate the airway mucosa in T2 disease, including subepithelial MCs expressing the proteases tryptase and chymase (MCTC) and epithelial MCs expressing tryptase without chymase (MCT). However, mechanisms underlying MC expansion and the transcriptional programs underlying their heterogeneity are poorly understood. Here, we use flow cytometry and single-cell RNA-sequencing (scRNA-seq) to conduct a comprehensive analysis of human MC hyperplasia in CRSwNP, a T2 cytokine-mediated inflammatory disease. We link discrete cell surface phenotypes to the distinct transcriptomes of CRSwNP MCT and MCTC, which represent polarized ends of a transcriptional gradient of nasal polyp MCs. We find a subepithelial population of CD38highCD117high MCs that is markedly expanded during T2 inflammation. These CD38highCD117high MCs exhibit an intermediate phenotype relative to the expanded MCT and MCTC subsets. CD38highCD117high MCs are distinct from circulating MC progenitors and are enriched for proliferation, which is markedly increased in CRSwNP patients with aspirin-exacerbated respiratory disease, a severe disease subset characterized by increased MC burden and elevated MC activation. We observe that MCs expressing a polyp MCT-like effector program are also found within the lung during fibrotic diseases and asthma, and further identify marked differences between MCTC in nasal polyps and skin. These results indicate that MCs display distinct inflammation-associated effector programs and suggest that in situ MC proliferation is a major component of MC hyperplasia in human T2 inflammation.


Assuntos
Mucosa Nasal/patologia , Pólipos Nasais/imunologia , Rinite/imunologia , Sinusite/imunologia , Adulto , Idoso , Proliferação de Células , Endoscopia , Feminino , Citometria de Fluxo , Humanos , Masculino , Mastócitos , Pessoa de Meia-Idade , Mucosa Nasal/citologia , Mucosa Nasal/imunologia , Mucosa Nasal/cirurgia , Pólipos Nasais/patologia , Procedimentos Cirúrgicos Nasais , RNA-Seq , Rinite/patologia , Rinite/cirurgia , Análise de Célula Única , Sinusite/patologia , Sinusite/cirurgia , Adulto Jovem
4.
J Allergy Clin Immunol ; 148(1): 195-208.e5, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33285161

RESUMO

BACKGROUND: The 3 cysteinyl leukotrienes (cysLTs), leukotriene (LT) C4 (LTC4), LTD4, and LTE4, have different biologic half-lives, cellular targets, and receptor specificities. CysLT2R binds LTC4 and LTD4in vitro with similar affinities, but it displays a marked selectivity for LTC4in vivo. LTC4, but not LTD4, strongly potentiates allergen-induced pulmonary eosinophilia in mice through a CysLT2R-mediated, platelet- and IL-33-dependent pathway. OBJECTIVE: We sought to determine whether LTD4 functionally antagonizes LTC4 signaling at CysLT2R. METHODS: We used 2 different in vivo models of CysLT2R-dependent immunopathology, as well as ex vivo activation of mouse and human platelets. RESULTS: LTC4-induced CD62P expression; HMGB1 release; and secretions of thromboxane A2, CXCL7, and IL-33 by mouse platelets were all were blocked by a selective CysLT2R antagonist and inhibited by LTD4. These effects did not depend on CysLT1R. Inhaled LTD4 blocked LTC4-mediated potentiation of ovalbumin-induced eosinophilic inflammation; recruitment of platelet-adherent eosinophils; and increases in IL-33, IL-4, IL-5, and IL-13 levels in lung tissue. In contrast, the effect of administration of LTE4, the preferred ligand for CysLT3R, was additive with LTC4. The administration of LTD4 to Ptges-/- mice, which display enhanced LTC4 synthesis similar to that in aspirin-exacerbated respiratory disease, completely blocked the physiologic response to subsequent lysine-aspirin inhalation challenges, as well as increases in levels of IL-33, type 2 cytokines, and biochemical markers of mast cell and platelet activation. CONCLUSION: The conversion of LTC4 to LTD4 may limit the duration and extent of potentially deleterious signaling through CysLT2R, and it may contribute to the therapeutic properties of desensitization to aspirin in aspirin-exacerbated respiratory disease.


Assuntos
Plaquetas/imunologia , Leucotrieno C4/imunologia , Leucotrieno D4/imunologia , Pulmão/imunologia , Ativação Plaquetária/imunologia , Animais , Asma/imunologia , Cisteína/imunologia , Citocinas/imunologia , Leucotrieno E4/imunologia , Leucotrienos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Eosinofilia Pulmonar/imunologia , Receptores de Leucotrienos/imunologia
5.
J Allergy Clin Immunol ; 145(6): 1574-1584, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32199912

RESUMO

BACKGROUND: The cause of severe nasal polyposis in aspirin-exacerbated respiratory disease (AERD) is unknown. Elevated antibody levels have been associated with disease severity in nasal polyps, but upstream drivers of local antibody production in nasal polyps are undetermined. OBJECTIVE: We sought to identify upstream drivers and phenotypic properties of local antibody-expressing cells in nasal polyps from subjects with AERD. METHODS: Sinus tissue was obtained from subjects with AERD, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), CRS without nasal polyps, and controls without CRS. Tissue antibody levels were quantified via ELISA and immunohistochemistry and were correlated with disease severity. Antibody-expressing cells were profiled with single-cell RNA sequencing, flow cytometry, and immunofluorescence, with IL-5Rα function determined through IL-5 stimulation and subsequent RNA sequencing and quantitative PCR. RESULTS: Tissue IgE and IgG4 levels were elevated in AERD compared with in controls (P < .01 for IgE and P < .001 for IgG4 vs CRSwNP). Subjects with AERD whose nasal polyps recurred rapidly had higher IgE levels than did subjects with AERD, with slower regrowth (P = .005). Single-cell RNA sequencing revealed increased IL5RA, IGHG4, and IGHE in antibody-expressing cells from patients with AERD compared with antibody-expressing cells from patients with CRSwNP. There were more IL-5Rα+ plasma cells in the polyp tissue from those with AERD than in polyp tissue from those with CRSwNP (P = .026). IL-5 stimulation of plasma cells in vitro induced changes in a distinct set of transcripts. CONCLUSIONS: Our study identifies an increase in antibody-expressing cells in AERD defined by transcript enrichment of IL5RA and IGHG4 or IGHE, with confirmed surface expression of IL-5Rα and functional IL-5 signaling. Tissue IgE and IgG4 levels are elevated in AERD, and higher IgE levels are associated with faster nasal polyp regrowth. Our findings suggest a role for IL-5Rα+ antibody-expressing cells in facilitating local antibody production and severe nasal polyps in AERD.


Assuntos
Aspirina/efeitos adversos , Imunoglobulina E/metabolismo , Imunoglobulina G/metabolismo , Subunidade alfa de Receptor de Interleucina-5/metabolismo , Pólipos Nasais/metabolismo , Sinusite/metabolismo , Adulto , Idoso , Anticorpos/metabolismo , Feminino , Humanos , Interleucina-5/metabolismo , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/induzido quimicamente , Plasmócitos/efeitos dos fármacos , Plasmócitos/metabolismo , Análise de Sequência de RNA/métodos , Sinusite/induzido quimicamente , Adulto Jovem
6.
Mucosal Immunol ; 12(3): 679-690, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30664709

RESUMO

Cysteinyl leukotrienes (cysLTs) facilitate eosinophilic mucosal type 2 immunopathology, especially in aspirin-exacerbated respiratory disease (AERD), by incompletely understood mechanisms. We now demonstrate that platelets, activated through the type 2 cysLT receptor (CysLT2R), cause IL-33-dependent immunopathology through a rapidly inducible mechanism requiring the actions of high mobility box 1 (HMGB1) and the receptor for advanced glycation end products (RAGE). Leukotriene C4 (LTC4) induces surface HMGB1 expression by mouse platelets in a CysLT2R-dependent manner. Blockade of RAGE and neutralization of HMGB1 prevent LTC4-induced platelet activation. Challenges of AERD-like Ptges-/- mice with inhaled lysine aspirin (Lys-ASA) elicit LTC4 synthesis and cause rapid intrapulmonary recruitment of platelets with adherent granulocytes, along with platelet- and CysLT2R-mediated increases in lung IL-33, IL-5, IL-13, and bronchoalveolar lavage fluid HMGB1. The intrapulmonary administration of exogenous LTC4 mimics these effects. Platelet depletion, HMGB1 neutralization, and pharmacologic blockade of RAGE eliminate all manifestations of Lys-ASA challenges, including increase in IL-33, mast cell activation, and changes in airway resistance. Thus, CysLT2R signaling on platelets prominently utilizes RAGE/HMGB1 as a link to downstream type 2 respiratory immunopathology and IL-33-dependent mast cell activation typical of AERD. Antagonists of HMGB1 or RAGE may be useful to treat AERD and other disorders associated with type 2 immunopathology.


Assuntos
Asma Induzida por Aspirina/imunologia , Plaquetas/imunologia , Proteína HMGB1/metabolismo , Pulmão/imunologia , Mastócitos/imunologia , Receptores de Leucotrienos/metabolismo , Animais , Células Cultivadas , Humanos , Interleucina-33/metabolismo , Leucotrieno C4/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prostaglandina-E Sintases/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores de Leucotrienos/genética , Transdução de Sinais
7.
N Engl J Med ; 376(20): 1911-1920, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28514613

RESUMO

BACKGROUND: Mast cells are present in the airways of patients who have severe asthma despite glucocorticoid treatment; these cells are associated with disease characteristics including poor quality of life and inadequate asthma control. Stem cell factor and its receptor, KIT, are central to mast-cell homeostasis. We conducted a proof-of-principle trial to evaluate the effect of imatinib, a KIT inhibitor, on airway hyperresponsiveness, a physiological marker of severe asthma, as well as on airway mast-cell numbers and activation in patients with severe asthma. METHODS: We conducted a randomized, double-blind, placebo-controlled, 24-week trial of imatinib in patients with poorly controlled severe asthma who had airway hyperresponsiveness despite receiving maximal medical therapy. The primary end point was the change in airway hyperresponsiveness, measured as the concentration of methacholine required to decrease the forced expiratory volume in 1 second by 20% (PC20). Patients also underwent bronchoscopy. RESULTS: Among the 62 patients who underwent randomization, imatinib treatment reduced airway hyperresponsiveness to a greater extent than did placebo. At 6 months, the methacholine PC20 increased by a mean (±SD) of 1.73±0.60 doubling doses in the imatinib group, as compared with 1.07±0.60 doubling doses in the placebo group (P=0.048). Imatinib also reduced levels of serum tryptase, a marker of mast-cell activation, to a greater extent than did placebo (decrease of 2.02±2.32 vs. 0.56±1.39 ng per milliliter, P=0.02). Airway mast-cell counts declined in both groups. Muscle cramps and hypophosphatemia were more common in the imatinib group than in the placebo group. CONCLUSIONS: In patients with severe asthma, imatinib decreased airway hyperresponsiveness, mast-cell counts, and tryptase release. These results suggest that KIT-dependent processes and mast cells contribute to the pathobiologic basis of severe asthma. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT01097694 .).


Assuntos
Asma/tratamento farmacológico , Mesilato de Imatinib/uso terapêutico , Mastócitos/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Asma/imunologia , Asma/fisiopatologia , Hiper-Reatividade Brônquica/tratamento farmacológico , Testes de Provocação Brônquica , Contagem de Células , Método Duplo-Cego , Feminino , Volume Expiratório Forçado/efeitos dos fármacos , Humanos , Mesilato de Imatinib/efeitos adversos , Masculino , Cloreto de Metacolina , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/efeitos adversos , Qualidade de Vida , Triptases/sangue , Triptases/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(22): 6242-7, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185938

RESUMO

Cysteinyl leukotrienes (cysLTs), leukotriene C4 (LTC4), LTD4, and LTE4 are proinflammatory lipid mediators with pathobiologic function in asthma. LTE4, the stable cysLT, is a weak agonist for the type 1 and type 2 cysLT receptors (CysLTRs), which constrict airway smooth muscle, but elicits airflow obstruction and pulmonary inflammation in patients with asthma. We recently identified GPR99 as a high-affinity receptor for LTE4 that mediates cutaneous vascular permeability. Here we demonstrate that a single intranasal exposure to extract from the respiratory pathogen Alternaria alternata elicits profound epithelial cell (EpC) mucin release and submucosal swelling in the nasal mucosa of mice that depends on cysLTs, as it is absent in mice deficient in the terminal enzyme for cysLT biosynthesis, LTC4 synthase (LTC4S). These mucosal changes are associated with mast cell (MC) activation and absent in MC-deficient mice, suggesting a role for MCs in control of EpC function. Of the three CysLTRs, only GPR99-deficient mice are fully protected from EpC mucin release and swelling elicited by Alternaria or by intranasal LTE4 GPR99 expression is detected on lung and nasal EpCs, which release mucin to doses of LTE4 one log lower than that required to elicit submucosal swelling. Finally, mice deficient in MCs, LTC4S, or GPR99 have reduced baseline numbers of goblet cells, indicating an additional function in regulating EpC homeostasis. These results demonstrate a novel role for GPR99 among CysLTRs in control of respiratory EpC function and suggest that inhibition of LTE4 and of GPR99 may have therapeutic benefits in asthma.


Assuntos
Células Epiteliais/metabolismo , Glutationa Transferase/farmacologia , Leucotrieno E4/farmacologia , Pulmão/metabolismo , Mastócitos/metabolismo , Mucinas/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Alternaria/química , Animais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
9.
J Allergy Clin Immunol ; 137(5): 1566-1576.e5, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26691435

RESUMO

BACKGROUND: Prostaglandin (PG) D2 is the dominant COX product of mast cells and is an effector of aspirin-induced respiratory reactions in patients with aspirin-exacerbated respiratory disease (AERD). OBJECTIVE: We evaluated the role of the innate cytokine thymic stromal lymphopoietin (TSLP) acting on mast cells to generate PGD2 and facilitate tissue eosinophilia and nasal polyposis in patients with AERD. METHODS: Urinary eicosanoid levels were measured in aspirin-tolerant control subjects and patients with AERD. Nasal polyp specimens from patients with AERD and chronic rhinosinusitis were analyzed by using quantitative PCR, Western blotting, and immunohistochemistry. Human cord blood-and peripheral blood-derived mast cells were stimulated with TSLP in vitro to assess PGD2 generation. RESULTS: Urinary levels of a stable PGD2 metabolite (uPGD-M) were 2-fold higher in patients with AERD relative to those in control subjects and increased further during aspirin-induced reactions. Peak uPGD-M levels during aspirin reactions correlated with reductions in blood eosinophil counts and lung function and increases in nasal congestion. Mast cells sorted from nasal polyps expressed PGD2 synthase (hematopoietic PGD2 synthase) mRNA at higher levels than did eosinophils from the same tissue. Whole nasal polyp TSLP mRNA expression correlated strongly with mRNA encoding hematopoietic PGD2 synthase (r = .75), the mast cell-specific marker carboxypeptidase A3 (r = .74), and uPGD-M (r = 0.74). Levels of the cleaved active form of TSLP were increased in nasal polyps from patients with AERD relative to those in aspirin-tolerant control subjects. Recombinant TSLP induced PGD2 generation by cultured human mast cells. CONCLUSIONS: Our study demonstrates that mast cell-derived PGD2 is a major effector of type 2 immune responses driven by TSLP and suggests that dysregulation of this innate system contributes significantly to the pathophysiology of AERD.


Assuntos
Asma Induzida por Aspirina/imunologia , Citocinas/imunologia , Mastócitos/imunologia , Prostaglandina D2/imunologia , Adulto , Idoso , Asma Induzida por Aspirina/sangue , Asma Induzida por Aspirina/urina , Células Cultivadas , Eosinofilia/sangue , Eosinofilia/imunologia , Eosinofilia/urina , Feminino , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/sangue , Pólipos Nasais/imunologia , Pólipos Nasais/urina , Prostaglandinas D/urina , Rinite/sangue , Rinite/imunologia , Rinite/urina , Sinusite/sangue , Sinusite/imunologia , Sinusite/urina , Adulto Jovem , Linfopoietina do Estroma do Timo
10.
BMC Microbiol ; 15: 228, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26494400

RESUMO

BACKGROUND: Chlamydia pneumoniae is a common human pathogen that is associated with upper and lower respiratory tract infections. It has also been suggested that C. pneumoniae infection can trigger or promote a number of chronic inflammatory conditions, including asthma and atherosclerosis. Several strains of C. pneumoniae have been isolated from humans and animals, and sequence data demonstrates marked genetic conservation, leaving unanswered the question as to why chronic inflammatory conditions may occur following some respiratory-acquired infections. METHODS: C. pneumoniae strains AR39 and AO3 were used in vitro to infect murine bone marrow derived macrophages and L929 fibroblasts, or in vivo to infect C57BL/6 mice via the intranasal route. RESULTS: We undertook a comparative study of a respiratory isolate, AR39, and an atheroma isolate, AO3, to determine if bacterial growth and host responses to infection varied between these two strains. We observed differential growth depending on the host cell type and the growth temperature; however both strains were capable of forming plaques in vitro. The host response to the respiratory isolate was found to be more inflammatory both in vitro, in terms of inflammatory cytokine induction, and in vivo, as measured by clinical response and lung inflammatory markers using a mouse model of respiratory infection. CONCLUSIONS: Our data demonstrates that a subset of C. pneumoniae strains is capable of evading host innate immune defenses during the acute respiratory infection. Further studies on the genetic basis for these differences on both the host and pathogen side could enhance our understanding how C. pneumoniae contributes to the development chronic inflammation at local and distant sites.


Assuntos
Infecções por Chlamydophila/patologia , Chlamydophila pneumoniae/isolamento & purificação , Evasão da Resposta Imune , Imunidade Inata , Macrófagos/imunologia , Placa Aterosclerótica/microbiologia , Sistema Respiratório/microbiologia , Animais , Células Cultivadas , Infecções por Chlamydophila/microbiologia , Chlamydophila pneumoniae/classificação , Chlamydophila pneumoniae/crescimento & desenvolvimento , Chlamydophila pneumoniae/imunologia , Modelos Animais de Doenças , Fibroblastos/imunologia , Fibroblastos/microbiologia , Humanos , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL
11.
J Immunol ; 195(8): 3537-45, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26342029

RESUMO

Aspirin-exacerbated respiratory disease (AERD), a severe eosinophilic inflammatory disorder of the airways, involves overproduction of cysteinyl leukotrienes (cysLTs), activation of airway mast cells (MCs), and bronchoconstriction in response to nonselective cyclooxygenase inhibitors that deplete homeostatic PGE2. The mechanistic basis for MC activation in this disorder is unknown. We now demonstrate that patients with AERD have markedly increased epithelial expression of the alarmin-like cytokine IL-33 in nasal polyps, as compared with polyps from aspirin-tolerant control subjects. The murine model of AERD, generated by dust mite priming of mice lacking microsomal PGE2 synthase (ptges(-/-) mice), shows a similar upregulation of IL-33 protein in the airway epithelium, along with marked eosinophilic bronchovascular inflammation. Deletion of leukotriene C4 synthase, the terminal enzyme needed to generate cysLTs, eliminates the increased IL-33 content of the ptges(-/-) lungs and sharply reduces pulmonary eosinophilia and basal secretion of MC products. Challenges of dust mite-primed ptges(-/-) mice with lysine aspirin induce IL-33-dependent MC activation and bronchoconstriction. Thus, IL-33 is a component of a cysLT-driven innate type 2 immune response that drives pathogenic MC activation and contributes substantially to AERD pathogenesis.


Assuntos
Asma Induzida por Aspirina/imunologia , Imunidade Inata , Interleucina-33/imunologia , Leucotrienos/imunologia , Mastócitos/imunologia , Adolescente , Adulto , Idoso , Animais , Asma Induzida por Aspirina/genética , Asma Induzida por Aspirina/patologia , Dinoprostona/genética , Dinoprostona/imunologia , Feminino , Humanos , Interleucina-33/genética , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Leucotrienos/genética , Masculino , Mastócitos/patologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Prostaglandina-E Sintases , Eosinofilia Pulmonar/genética , Eosinofilia Pulmonar/imunologia , Eosinofilia Pulmonar/patologia
12.
J Immunol ; 194(11): 5061-8, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25904552

RESUMO

Cysteinyl leukotrienes (cysLTs) are bronchoconstricting lipid mediators that amplify eosinophilic airway inflammation by incompletely understood mechanisms. We recently found that LTC4, the parent cysLT, potently activates platelets in vitro and induces airway eosinophilia in allergen-sensitized and -challenged mice by a platelet- and type 2 cysLT receptor-dependent pathway. We now demonstrate that this pathway requires production of thromboxane A2 and signaling through both hematopoietic and lung tissue-associated T prostanoid (TP) receptors. Intranasal administration of LTC4 to OVA-sensitized C57BL/6 mice markedly increased the numbers of eosinophils in the bronchoalveolar lavage fluid, while simultaneously decreasing the percentages of eosinophils in the blood by a TP receptor-dependent mechanism. LTC4 upregulated the expressions of ICAM-1 and VCAM-1 in an aspirin-sensitive and TP receptor-dependent manner. Both hematopoietic and nonhematopoietic TP receptors were essential for LTC4 to induce eosinophil recruitment. Thus, the autocrine and paracrine functions of thromboxane A2 act downstream of LTC4/type 2 cysLT receptor signaling on platelets to markedly amplify eosinophil recruitment through pulmonary vascular adhesion pathways. The findings suggest applications for TP receptor antagonists in cases of asthma with high levels of cysLT production.


Assuntos
Aspirina/farmacologia , Plaquetas/imunologia , Cisteína/imunologia , Leucotrieno C4/imunologia , Leucotrienos/imunologia , Ativação Plaquetária/imunologia , Alérgenos/imunologia , Animais , Asma/tratamento farmacológico , Asma/imunologia , Transplante de Medula Óssea , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Eosinofilia/sangue , Eosinofilia/imunologia , Inflamação/imunologia , Molécula 1 de Adesão Intercelular/biossíntese , Antagonistas de Leucotrienos/farmacologia , Leucotrieno C4/farmacologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Tromboxano A2/biossíntese , Tromboxano A2/imunologia , Molécula 1 de Adesão de Célula Vascular/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...